Marking Scheme Class X Session 2023-24 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours MAX.MARKS: 80

	SECTION A	
	Section A consists of 20 questions of 1 mark each.	
1.	(b) xy^2	1
2.	(b) 1 zero and the zero is '3'	1
3.	$a_0 = \frac{a_1}{a_1} - \frac{b_1}{a_2} + \frac{c_1}{a_2}$	1
	(b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	
4.	(c) 2 distinct real roots	1
5.	(c) 7	1
6.	(a) 1:2	1
7.	(d) infinitely many ac	1
8.	(b) —	1
	b+c	
9.	(b) 100°	1
10.	(d) 11 cm	1
11.	$\sqrt{b^2-a^2}$	1
	$(c) \frac{}{}$	
12.	(d) cos A	1
13.	(a) 60°	1
14.	(a) 2 units	1
15.	(a) 10m	1
16.	$4-\pi$	1
	$(b) {4}$	
17.	(b) $\frac{22}{16}$	1
	46	
18.	(d) 150	1
19.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1
20.	(c) Assertion (A) is true but reason (R) is false.	1
20.	SECTION B	
	Section B consists of 5 questions of 2 marks each.	
21.	Let us assume, to the contrary, that $\sqrt{2}$ is rational.	
	So, we can find integers a and b such that $\sqrt{2} = \frac{a}{b}$ where a and b are coprime.	1/2
	b b	
	So, b $\sqrt{2} = a$.	
	Squaring both sides, we get $2b^2 = a^2$.	
	Therefore, 2 divides a^2 and so 2 divides a.	1/2
	So, we can write a = 2c for some integer c.	
	Substituting for a, we get $2b^2 = 4c^2$, that is, $b^2 = 2c^2$.	1/2
	This means that 2 divides b ² , and so 2 divides b	72
	Therefore, a and b have at least 2 as a common factor.	
	But this contradicts the fact that a and b have no common factors other than 1.	1/2
	This contradiction has arisen because of our incorrect assumption that $\sqrt{2}$ is rational.	, 2
	So, we conclude that $\sqrt{2}$ is irrational.	

22.	ABCD is a parallelogram.	1/2
	AB = DC = a Point P divides AB in the ratio 2:3	
	AP = $\frac{2}{r}$ a, BP = $\frac{3}{r}$ a	
	point Q divides DC in the ratio 4:1.	1,
	$DQ = \frac{4}{5} a , CQ = \frac{1}{5} a$	1/2
	$\Delta APO \sim \Delta CQO [AA similarity]$	
	$\frac{AP}{CQ} = \frac{PO}{QO} = \frac{AO}{CO}$	1/2
	cq - qo - co	1/2
	$\frac{AO}{5} - \frac{\frac{2}{5}a}{5} - \frac{2}{5} \rightarrow OC = \frac{1}{6}OA$	/2
	$\frac{AO}{CO} = \frac{\frac{2}{5}a}{\frac{1}{5}a} = \frac{2}{1} \implies OC = \frac{1}{2}OA$	
23.		
	PA = PB; CA = CE; DE = DB [Tangents to a circle]	1/2
	Perimeter of $\triangle PCD = PC + CD + PD$ = PC + CE + ED + PD	
	= PC + CA + BD + PD	
	= PA + PB Positive start of ABCD = PA + PA = 2PA = 2(10) = 20	1
	Perimeter of $\triangle PCD = PA + PA = 2PA = 2(10) = 20$ cm	1/2
24.	$\therefore \tan(A+B) = \sqrt{3} \therefore A+B = 60^{0} \qquad \dots (1)$	1/2
	$arr \tan(A - B) = \frac{1}{\sqrt{3}} \therefore A - B = 30^{0}$ (2)	1/2
	Adding (1) & (2), we get $2A=90^0 \implies A = 45^0$	1/ ₂ 1/ ₂
	Also (1) –(2), we get $2B = 30^0 \implies B = 45^0$ [or]	,-
	[OI]	
	$2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$	
	$(\sqrt{3})^2$ $(\sqrt{3})^2$	
	$\Rightarrow 2(2)^2 + x \left(\frac{\sqrt{3}}{2}\right)^2 - \frac{3}{4} \left(\frac{1}{\sqrt{3}}\right)^2 = 10$	1
	\Rightarrow 2(4) + x $\left(\frac{3}{4}\right)$ - $\frac{3}{4}\left(\frac{1}{3}\right)$ = 10	1/2
	$\Rightarrow 8 + x \left(\frac{3}{4}\right) - \frac{1}{4} = 10$	
	$\Rightarrow 32 + x(3) - 1 = 40$	1/2
25	$\Rightarrow 3x = 9 \Rightarrow x = 3$ Total area removed = $\frac{\angle A}{360} \pi r^2 + \frac{\angle B}{360} \pi r^2 + \frac{\angle C}{360} \pi r^2$	
25.	Total area removed = $\frac{1}{360} \pi r^2 + \frac{1}{360} \pi r^2 + \frac{1}{360} \pi r^2$	1/2
	$=\frac{\angle A+\angle B+\angle C}{360}\pi r^2$	
	$=\frac{180}{360}\pi r^2$	1/2
	$= \frac{180}{360} \times \frac{22}{7} \times (14)^2$	1/2
	$360^{\circ} 7^{\circ}$ = 308 cm^2	/2
	[or]	
	The side of a square — Diovestor of the same size is	
	The side of a square = Diameter of the semi-circle = a Area of the unshaded region	1/2
	= Area of a square of side 'a' + 4(Area of a semi-circle of diameter 'a')	
	The horizontal/vertical extent of the white region = 14-3-3 = 8 cm	1/2
	Radius of the semi-circle + side of a square + Radius of the semi-circle = 8 cm	

	2 (radius of the semi-circle) + side of a square = 8 cm	
	$2a = 8 \text{ cm} \Rightarrow a = 4 \text{ cm}$	1/2
	Area of the unshaded region	
	= Area of a square of side 4 cm + 4 (Area of a semi-circle of diameter 4 cm)	
	$= (4)^2 + 4 \times \frac{1}{2} \pi (2)^2 = (16 + 8\pi) \text{ cm}^2$	1/2
	SECTION C	
26	Section C consists of 6 questions of 3 marks each	1/
26.	Number of students in each group subject to the given condition = HCF $(60,84,108)$ HCF $(60,84,108)$ = 12	1/ ₂ 1/ ₂
	Number of groups in Music = $\frac{60}{12}$ = 5	/2
	12	1/2
	Number of groups in Dance = $\frac{84}{13}$ = 7	1/2
	12	1/2
	Number of groups in Handicrafts = $\frac{108}{12}$ = 9	1/2
	Total number of rooms required = 21	
27.	$P(x) = 5x^2 + 5x + 1$	1/2
	$\alpha + \beta = \frac{-b}{-} = \frac{-5}{-} = -1$	1,
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$\alpha + \beta = \frac{-b}{a} = \frac{-5}{5} = -1$ $\alpha \beta = \frac{c}{a} = \frac{1}{5}$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	1/2
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	1/2
	$=(-1)^2-2\left(\frac{1}{5}\right)$	72
	2 3	1/2
	= 1 - - = - 5	
	$= 1 - \frac{2}{5} = \frac{3}{5}$ $\alpha^{-1} + \beta^{-1} = \frac{1}{\alpha} + \frac{1}{\beta}$	1/2
	$=\frac{(\alpha+\beta)}{\alpha\beta}=\frac{(-1)}{\frac{1}{2}}=-5$	
	$-\alpha\beta$ $-\frac{1}{5}$	
28.	Let the ten's and the unit's digits in the first number be x and y, respectively.	
	So, the original number = $10x + y$	
	When the digits are reversed, x becomes the unit's digit and y becomes the ten's	
	Digit.	1/2
	So the obtain by reversing the digits= 10y + x	
	According to the given condition.	
	(10x + y) + (10y + x) = 66	1,
	i.e., $11(x + y) = 66$	1/2
	i.e., $x + y = 6 - (1)$	1/
	We are also given that the digits differ by 2, therefore, either $x - y = 2$ (2)	1/ ₂ 1/ ₂
	or $y - x = 2 - (3)$	72
	If $x - y = 2$, then solving (1) and (2) by elimination, we get $x = 4$ and $y = 2$.	1/2
		/2
	In this case, we get the number 42.	
	In this case, we get the number 42 . If $y - x = 2$, then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$.	1/2
	In this case, we get the number 42. If $y - x = 2$, then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$. In this case, we get the number 24.	
	In this case, we get the number 42 . If $y - x = 2$, then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$. In this case, we get the number 24 . Thus, there are two such numbers 42 and 24 . [or]	
	In this case, we get the number 42 . If $y - x = 2$, then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$. In this case, we get the number 24 . Thus, there are two such numbers 42 and 24 . [or]	
	In this case, we get the number 42. If $y - x = 2$, then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$. In this case, we get the number 24. Thus, there are two such numbers 42 and 24. [or] Let $\frac{1}{\sqrt{x}}$ be 'm' and $\frac{1}{\sqrt{y}}$ be 'n',	1/2
	In this case, we get the number 42 . If $y - x = 2$, then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$. In this case, we get the number 24 . Thus, there are two such numbers 42 and 24 . [or]	1/2

	$(2m + 3n = 2) X-2 \Rightarrow -4m - 6n = -4$ (1)	
	4m - 9n = -1 $4m - 9n = -1$ (2)	
	Adding (1) and (2)	1,
	We get $-15n = -5 \Rightarrow n = \frac{1}{3}$	1/2
	4	
	Substituting $n = \frac{1}{3}$ in $2m + 3n = 2$, we get	1/2
	2m + 1 = 2	, -
	2m = 1	
	$m = \frac{1}{2}$	1
	$m = \frac{1}{2} \implies \sqrt{x} = 2 \implies x = 4 \text{ and } n = \frac{1}{3} \implies \sqrt{y} = 3 \implies y = 9$	
29.	$\frac{1}{2}$	
L).	$\angle OAB = 30^{\circ}$	
	$\angle OAP = 90^{\circ}$ [Angle between the tangent and	
	the radius at the point of contact]	
	$\angle PAB = 90^{\circ} - 30^{\circ} = 60^{\circ}$	1/2
	AP = BP [Tangents to a circle from an external point]	
	$\angle PAB = \angle PBA$ [Angles opposite to equal sides of a triangle]	1/2
	In \triangle ABP, \angle PAB + \angle PBA + \angle APB = 180° [Angle Sum Property]	
	$60^{\circ} + 60^{\circ} + \angle APB = 180^{\circ}$	
	$\angle APB = 60^{\circ}$	1/2
	\therefore ΔABP is an equilateral triangle, where AP = BP = AB. PA = 6 cm	1/
	In Right $\triangle OAP$, $\angle OPA = 30^{\circ}$	1/2
	to $20^{\circ} - \frac{0A}{20^{\circ}}$	
	$\tan 30^{\circ} = \frac{1}{PA}$	1/2
	$\tan 30^\circ = \frac{OA}{PA}$ $\frac{1}{\sqrt{3}} = \frac{OA}{6}$	/2
	$OA = \frac{6}{\sqrt{3}} = 2\sqrt{3}cm$	1/2
	[or]	
	r. 1	
	Let $\angle TPQ = \theta$	
	∠ TPO = 90° [Angle between the tangent and	
	the radius at the point of contact]	1/2
	$\angle OPQ = 90^{\circ} - \theta$	
	TP = TQ [Tangents to a circle from an external]	
	point]	1,
	$\angle TPQ = \angle TQP = \theta$ [Angles opposite to equal sides of a triangle]	1/2
	In $\triangle PQT$, $\angle PQT + \angle QPT + \angle PTQ = 180^{\circ}$ [Angle Sum Property]	1/ ₂ 1/ ₂
	$\theta + \theta + \angle PTQ = 180^{\circ}$	72
	$\angle PTQ = 180^{\circ} - 2 \theta$	1/2
	$\angle PTQ = 2 (90^{\circ} - \theta)$	1/2
	$\angle PTQ = 2 \angle OPQ$ [using (1)]	
30.	Given, $1 + \sin^2\theta = 3 \sin\theta \cos\theta$	
	Dividing both sides by $\cos^2\theta$,	
	$\frac{1}{\cos^2\theta} + \tan^2\theta = 3\tan\theta$	
	$sec^2θ + tan^2θ = 3 tan θ$	1/2
	$1 + \tan^2\theta + \tan^2\theta = 3 \tan \theta$	1/2
	$1 + 2 \tan^2 \theta = 3 \tan \theta$	1/ ₂
	$2 \tan^2 \theta - 3 \tan \theta + 1 = 0$	1/2
	If $\tan \theta = x$, then the equation becomes $2x^2 - 3x + 1 = 0$	

	$\Rightarrow (x-1)(2x-1) = 0 \text{ x} = 1 \text{ or } \frac{1}{2}$						
	$\tan \Omega = 1 \text{ or } 1$				1		
31.	Land						
	Length [in mm]	Number of leaves (f)	CI	Mid x	d	fd	
	118 – 126	3	117.5- 126.5	122	-27	-81	
	127 – 135	5	126.5-135.5	131	-18	-90	
	136 - 144	9	135.5- 144.5	140	-9	-81	
	145 - 153	12	144.5 - 153.5	a = 149	0	0	
	154 - 162	5	153.5 - 162.5	158	9	45	2
	163 - 171	4	162.5 – 171.5	167	18	72	1/2
	172 - 180	2	171.5 - 180.5	176	27	54	1/2
		Mean	$= a + \frac{\sum fd}{\sum f} = 149$	+ -8	_		
			2J = 149 – 2.025 = 1				
	Average length	of the leaves	= 146.975 SECT	ION D			
			SEC11	ION D			
		Section D	consists of 4 qu	uestions of 5 n	narks each		
32.	The speed of the boat upstream = $(18 - x)$ km/h and the speed of the boat downstream = $(18 + x)$ km/h. distance 24					1	
	the time taken to go downstream = $\frac{speed}{spe} = \frac{18-x}{18+x}$ hours According to the question,						1
	$\frac{24}{18-x} - \frac{24}{18+x} = 1$					1	
	18-x $18+x$						
	$24(18 + x) - 24(18 - x) = (18 - x) (18 + x)$ $x^{2} + 48x - 324 = 0$						
	x = 6 or -54 Since x is the speed of the stream, it cannot be negative.						
		•	the speed of the	_			1
	[or]					1	
	Let the time taken by the smaller pipe to fill the tank = x hr. Time taken by the larger pipe = $(x - 10)$ hr						1/2
	Part of the tank filled by smaller pipe in 1 hour = $\frac{1}{x}$						
			y larger pipe in	x-10			1
	- 75					1/2	
	Part of the tank filled by both the pipes in 1 hour = $\frac{8}{75}$					1/2	

		1
	Therefore, $\frac{1}{x} + \frac{1}{x - 10} = \frac{8}{75}$ $8x^2 - 230x + 750 = 0$	1/2
	$x = 25, \frac{30}{8}$	1
	Time taken by the smaller pipe cannot be $30/8 = 3.75$ hours, as the time taken by	1/2
	the larger pipe will become negative, which is logically not possible. Therefore, the time taken individually by the smaller pipe is 25 hours and the larger pipe will be $25 - 10 = 15$ hours.	1/2
33.	(a) Statement – ½	
	Given and To Prove – ½	
	Figure and Construction ½	3
	Proof – 1 ½	
	[b] Draw DG BE	
	In \triangle ABE, $\frac{AB}{BD} = \frac{AE}{GE}$ [BPT]	1/2
	In \triangle ABE, $\overline{BD} - \overline{GE}$ [BP1]	
	CF = FD [F is the midpoint of DC](i)	1/2
	In \triangle CDG, $\frac{DF}{CF} = \frac{GE}{CE} = 1$ [Mid point theorem]	1/2
	GE = CE(ii)	, -
	$\angle CEF = \angle CFE$ [Given]	
	CF = CE [Sides opposite to equal angles](iii)	1/2
	From (ii) & (iii) CF = GE(iv) From (i) & (iv) GE = FD	
	$\therefore \frac{AB}{BD} = \frac{AE}{GE} \Rightarrow \frac{AB}{BD} = \frac{AE}{FD}$	
34.		
	Length of the pond, $l=50m$, width of the pond, $b=44m$	
	Water level is to rise by, h = 21 cm = $\frac{21}{100}$ m	
	Volume of water in the pond = lbh = $50 \times 44 \times \frac{21}{100} \text{ m}^3 = 462 \text{ m}^3$	1
	Diameter of the pipe = 14 cm	
	Radius of the pipe, $r = 7cm = \frac{7}{100}m$	
	Area of cross-section of pipe = πr^2	
	$= \frac{22}{7} \times \frac{7}{100} \times \frac{7}{100} = \frac{154}{10000} \text{ m}^2$	1
		1/2
	Rate at which the water is flowing through the pipe, $h = 15km/h = 15000 m/h$ Volume of water flowing in 1 hour = Area of cross-section of pipe x height of water	1/2
	coming out of pipe	72
	$= \left(\frac{154}{10000} \times 15000\right) m^3$	1
	Volume of the nond	
	Time required to fill the pond = $\frac{Volume \ of \ the \ pond}{Volume \ of \ water \ flowing \ in \ 1 \ hour}$	1
	$=\frac{462 \times 10000}{1000} = 2 \text{ hours}$	
	154 imes 15000	
	Speed of water if the rise in water level is to be attained in 1 hour = 30km/h [or]	
	լտյ	<u> </u>

					_	
	Radius of the cylindrical tent (r) = Total height of the tent =			†		
Height of the cylinder = 3 m						
	Height of the Conical part = 10.5 m					
	Slant height of the cone (l) = $\sqrt{h^2}$	$+ r^2$		1		
$=\sqrt{(10.5)^2+(14)^2}$ 14m 3m						
	$=\sqrt{110}$	0.25 + 196			1	
		$\overline{0.25} = 17.5 \text{ m}$			1	
	Curved surface area of cylindrical	_				
		$= 2\pi rh$				
		$=2x\frac{22}{7}\times14\times3$	3		1	
		$= 264 \text{ m}^2$				
	Curved surface area of conical por					
		=πrl 22				
		$=\frac{22}{7}\times14\times17.5$			1	
		$=770 \text{ m}^2$	1024 2		1/2	
	Total curved surface area = 264 n Provision for stitching and wastag		1034 m ² 26 m ²			
		<u> </u>	20 111-		1/2	
	Area of canvas to be purchased		1060 m ²		/2	
	Cost of canvas = Rate × Surface ar	ea			1/2	
	= 500 x 1060 = ₹ 5	,30,000/-				
35.		NIl C	C lati			
	Marks obtained	Number of students	Cumulative frequency			
	20 - 30	р	р			
	30 - 40	15	p + 15			
	40 - 50	25	p + 40		1	
	50 - 60	20	p + 60			
	60 - 70	q	p + q + 60			
	70 - 80	8	p + q + 68		1,	
	80 - 90	10	p + q + 78		1/ ₂ 1/ ₂	
	00 70	90	piqi70		/2	
	p + q + 78 = 90	90				
	10					
	$\frac{n}{z}$ -c					
	$p + q = 12$ $Median = (l) + \frac{\frac{n}{2} - c}{f} \cdot h$					
	$50 = 50 + \frac{45 - (p + 40)}{20} \cdot 10$				1/2	
	30 - 30 + 20				1,	
	$\frac{45 - (p + 40)}{20} \cdot 10 = 0$				1/2	
	45 - (p + 40) = 0				1/2	
	P = 5 5 + q = 12				1/2	
	q = 7					
	Mode = $l + \frac{f1-f0}{2f1-f0-f2}$. h				1	
	2f1-f0-f2					

	$=40+\frac{25-15}{2(25)-15-20}.10$				
	$= 40 + \frac{100}{15} = 40 + 6.67 = 46.67$				
	19				
	SECTION E				
36.	(i) Number of throws during camp. a = 40; d = 12	1			
	$t_{11} = a + 10d$				
	$= 40 + 10 \times 12$				
	= 160 throws	1/			
	(ii) $a = 7.56 \text{ m}; d = 9 \text{cm} = 0.09 \text{ m}$	1/2			
	n = 6 weeks	1/2			
	$t_n = a + (n-1) d$	1/2			
	= 7.56 + 6(0.09) $= 7.56 + 0.54$	1/			
	Sanjitha's throw distance at the end of 6 weeks = 8.1 m	1/2			
	(or)				
	a = 7.56 m; d = 9 cm = 0.09 m	1,			
	$t_n = 11.16 \text{ m}$	1/ ₂ 1/ ₂			
	$t_n = a + (n-1) d$	1/2			
	11.16 = 7.56 + (n-1)(0.09)	1/2			
	3.6 = (n-1)(0.09)	/2			
	$n-1 = \frac{3.6}{0.09} = 40$	1/2			
	n = 41	/2			
	Sanjitha's will be able to throw 11.16 m in 41 weeks.				
	(iii) $a = 40$; $d = 12$; $n = 15$				
	$S_n = \frac{n}{2} [2a + (n-1) d]$	1/2			
	$S_n = \frac{15}{2} [2(40) + (15-1)(12)]$				
	$=\frac{15}{2}[80+168]$				
	$oldsymbol{\mathcal{L}}$				
	$=\frac{15}{2}$ [248] =1860 throws	1/2			
37.	(i) Let D be (a,b), then				
	Mid point of AC = Midpoint of BD				
		1/2			
	$\left(\frac{1+6}{2}, \frac{2+6}{2}\right) = \left(\frac{4+a}{2}, \frac{3+b}{2}\right)$				
	4 + a = 7 $3 + b = 8$				
	a = 3 b = 5				
	Central midfielder is at (3,5)	1/2			

	(ii) GH = $\sqrt{(-3-3)^2 + (5-1)^2} = \sqrt{36+16} = \sqrt{52} = 2\sqrt{13}$	1/2
	$GK = \sqrt{(0+3)^2 + (3-5)^2} = \sqrt{9+4} = \sqrt{13}$	1/ ₂ 1/ ₂
	$HK = \sqrt{(3-0)^2 + (1-3)^2} = \sqrt{9+4} = \sqrt{13}$	1/2
	GK +HK = GH ⇒G,H & K lie on a same straight line	
	[or]	1,
	$CJ = \sqrt{(0-5)^2 + (1+3)^2} = \sqrt{25+16} = \sqrt{41}$	1/ ₂ 1/ ₂
	$CI = \sqrt{(0+4)^2 + (1-6)^2} = \sqrt{16+25} = \sqrt{41}$	/2
	Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1)	
	Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$	1/ ₂ 1/ ₂
	C is NOT the mid-point of IJ	/2
	o to the time period of the	
	(iii) A,B and E lie on the same straight line and B is equidistant from A and E	
	\Rightarrow B is the mid-point of AE	
	$\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$	1/2
	$\begin{pmatrix} 2 & 2 & 1 \\ 1+a=4 \cdot a=3 \\ 4+b=-6 \cdot b=-10 \text{ Fis } (3-10)$	1/2
38.		1
	80	1/2
	(ii) $\tan 30^\circ = \frac{1}{CE}$	1/2
	$\Rightarrow \frac{1}{\sqrt{2}} = \frac{80}{1}$	1/2
	$\sqrt{3}$ CE	1/2
	\Rightarrow CE = $80\sqrt{3}$	
	Distance the bird flew = AD = BE = CE-CB = $80\sqrt{3}$ – $80 = 80(\sqrt{3}$ -1) m	
		1/2
	(or)	1/2
	$\tan 60^{\circ} = \frac{80}{CG}$	
	75 80 75 80	1/2
	$\Rightarrow \sqrt{3} = \frac{80}{CG}$	1/2
	9.0	
	\Rightarrow CG = $\frac{80}{\sqrt{3}}$	
	Distance the ball travelled after hitting the tree =FA=GB = CB -CG	
	GB = 80 - $\frac{80}{\sqrt{3}}$ = 80 (1 - $\frac{1}{\sqrt{3}}$) m	
	(iii) Speed of the bird = $\frac{Distance}{Time\ taken} = \frac{20(\sqrt{3}+1)}{2}$ m/sec	1/2
		1/2
	$= \frac{20(\sqrt{3}+1)}{2} \times 60 \text{ m/min} = 600(\sqrt{3}+1) \text{ m/min}$	72